2019版高考数学二轮复习第1篇专题5立体几何第2讲大题考法——立体几何的综合问题学案

第2讲 大题考法——立体几何的综合问题

考向一 平行、垂直的证明与空间几何体的体积计算问题

【典例】 (2017·全国卷Ⅱ)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直1

于底面ABCD,AB=BC=AD,∠BAD=∠ABC=90°.

2

(1)证明:直线BC∥平面PAD;

(2)若△PCD的面积为27,求四棱锥P-ABCD的体积. [审题指导]

1

①看到AB=BC=AD,想到取AD的中点

2

②看到四边形ABCD中,∠BAD=∠ABC=90°,想到BC∥AD③看到求VP-ABCD,想到体积公式,关键是确定高及底面积[规范解答] (1)证明:在平面ABCD内, 因为∠BAD=∠ABC=90°,所以BC∥AD. 又BC?平面PAD,AD?平面PAD, 故BC∥平面PAD.4分

1

(2)解:如图,取AD的中点M,连接PM,CM.由AB=BC=AD及BC∥AD,∠ABC=90°,

2

1

?

2分 3分

得四边形ABCM为正方形,则CM⊥AD. 6分

因为侧面PAD为等边三角形且垂直于底面ABCD,平面PAD∩平面ABCD=AD, 所以PM⊥AD,PM⊥底面ABCD. 因为CM?底面ABCD,所以PM⊥CM. 设BC=x,则CM=x,CD=2x,

8分 9分

?

PM=3x,PC=PD=2x.

取CD的中点N,连接PN,则PN⊥CD, 所以PN=

14x. 2

10分

?

114

因为△PCD的面积为27,所以×2x×x=27,

22解得x=-2(舍去)或x=2. 于是AB=BC=2,AD=4,PM=23. 所以四棱锥P-ABCD的体积

11分

V=×

1

3+2

×23=43.

12分

?处在证明线面平行问题时,易忽视线不在面内这一条件从而失分,注意线面平行条件使用的规范化.

?处易忽视通过侧面PAD⊥底面ABCD可转化为线面垂直及线线垂直,从而不能创设垂直关系和利用数量等量关系来确定底面边长及高.

?处易忽视如何表示△PCD的面积,即以CD为底,高如何确定,导致思路不通.

[技法总结] 位置关系的证明与求几何体的体积综合问题的模型

[变式提升]

2

1.(2018·天水二模)在多面体ABCDPQ中,平面PAD⊥平面ABCD.AB∥CD∥PQ,AB⊥AD,△PAD为正三角形,O为AD中点,且AD=AB=2,CD=PQ=1.

(1)求证:平面POB⊥平面PAC;

证明 由条件可知,

Rt△ADC≌Rt△BAO,故∠DAC=∠ABO. ∴∠DAC+∠AOB=∠ABO+∠AOB=90°. ∴AC⊥BO.

∵PA=PD,且O为AD中点,∴PO⊥AD. 平面PAD⊥平面ABCD. 平面PAD∩平面ABCD=AD,??

∵?PO⊥AD,??PO?平面PAD∴PO⊥平面ABCD.

又∵AC?平面ABCD,∴AC⊥PO. 又∵BO∩PO=O,∴AC⊥平面POB. ∵AC?平面PAC, ∴平面POB⊥平面PAC.

(2)求多面体ABCDPQ的体积. 解 取AB中点为E,连接CE,QE. 由(1)可知,PO⊥平面ABCD.

又∵AB?平面ABCD,∴PO⊥AB.

又∵AB⊥AD,PO∩AD=O,∴AB⊥平面PAD.

131?1?2

∴VABCDPQ=VPAD-QEC+VQ-CEB=S△PAD·|AE|+S△CEB·|PO|=×2×1+?×1×2?×3=

343?2?

3

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4