大学物理学(第五版)上册(马文蔚)课后答案及解析.

(5) (6)

解(5)(6)两式,可得内轨侧压力为

2-12 分析 杂技演员(连同摩托车)的运动可以看成一个水平面内的匀速率圆周运动和一个竖直向上匀速直线运动的叠加.其旋转一周所形成的旋线轨迹展开后,相当于如图(b)所示的斜面.把演员的运动速度分解为图示的v1 和v2 两个分量,显然v1是竖直向上作匀速直线运动的分速度,而v2则是绕圆筒壁作水平圆周运动的分速度,其中向心力由筒壁对演员的支持力FN 的水平分量FN2 提供,而竖直分量FN1 则与重力相平衡.如图(c)所示,其中φ角为摩托车与筒壁所夹角.运用牛顿定律即可求得筒壁支持力的大小和方向力.

解 设杂技演员连同摩托车整体为研究对象,据(b)(c)两图应有 (1) (2) (3) (4) 以式(3)代入式(2),得 (5)

将式(1)和式(5)代入式(4),可求出圆筒壁对杂技演员的作用力(即支承力)大小为

与壁的夹角φ为

讨论 表演飞车走壁时,演员必须控制好运动速度,行车路线以及摩托车的方位,以确保三者之间满足解题用到的各个力学规律.

2-13 分析 首先应由题图求得两个时间段的F(t)函数,进而求得相应的加速度函数,运用积分方法求解题目所问,积分时应注意积分上下限的取值应与两时间段相应的时刻相对应. 解 由题图得

由牛顿定律可得两时间段质点的加速度分别为

对0 <t <5s 时间段,由 得 积分后得 再由 得 积分后得

将t =5s 代入,得v5=30 m?6?1s-1 和x5 =68.7 m 对5s<t <7s 时间段,用同样方法有 得

再由 得 x =17.5t2 -0.83t3 -82.5t +147.87

将t =7s代入分别得v7=40 m?6?1s-1 和 x7 =142 m

2-14 分析 这是在变力作用下的动力学问题.由于力是时间的函数,而加速度a=dv/dt,这时,动力学方程就成为速度对时间的一阶微分方程,解此微分方程可得质点的速度v (t);由速度的定义v=dx /dt,用积分的方法可求出质点的位置. 解 因加速度a=dv/dt,在直线运动中,根据牛顿运动定律有

依据质点运动的初始条件,即t0 =0 时v0 =6.0 m?6?1s-1 ,运用分离变量法对上式积分,得 v=6.0+4.0t+6.0t2

又因v=dx /dt,并由质点运动的初始条件:t0 =0 时x0 =5.0 m,对上式分离变量后积分,有

x =5.0+6.0t+2.0t2 +2.0t3

2-15 分析 飞机连同驾驶员在水平跑道上运动可视为质点作直线运动.其水平方向所受制动力F 为变力,且是时间的函数.在求速率和距离时,可根据动力学方程和运动学规律,采用分离变量法求解.

解 以地面飞机滑行方向为坐标正方向,由牛顿运动定律及初始条件, 得 因此,飞机着陆10s后的速率为 v =30 m?6?1s-1

故飞机着陆后10s内所滑行的距离

2-16 分析 该题可以分为两个过程,入水前是自由落体运动,入水后,物体受重力P、浮力F 和水的阻力Ff的作用,其合力是一变力,因此,物体作变加速运动.虽然物体的受力分析比较简单,但是,由于变力是速度的函数(在有些问题中变力是时间、位置的函数),对这类问题列出动力学方程并不复杂,但要从它计算出物体运动的位置和速度就比较困难了.通常需要采用积分的方法去解所列出的微分方程.这也成了解题过程中的难点.在解方程的过程中,特别需要注意到积分变量的统一和初始条件的确定.

解 (1) 运动员入水前可视为自由落体运动,故入水时的速度为

运动员入水后,由牛顿定律得 P -Ff -F =ma

由题意P =F、Ff=bv2 ,而a =dv /dt =v (d v /dy),代 入上式后得 -bv2= mv (d v /dy) 考虑到初始条件y0 =0 时, ,对上式积分,有

(2) 将已知条件b/m =0.4 m -1 ,v =0.1v0 代入上式,则得

2-17 分析 螺旋桨旋转时,叶片上各点的加速度不同,在其各部分两侧的张力也不同;由于叶片的质量是连续分布的,在求叶片根部的张力时,可选取叶片上一小段,分析其受力,列出动力学方程,然后采用积分的方法求解.

解 设叶片根部为原点O,沿叶片背离原点O 的方向为正向,距原点O 为r处的长为dr一小段叶片,其两侧对它的拉力分别为FT(r)与FT(r+dr).叶片转动时,该小段叶片作圆周运动,由牛顿定律有

由于r =l 时外侧FT =0,所以有

上式中取r =0,即得叶片根部的张力FT0 =-2.79 ×105 N 负号表示张力方向与坐标方向相反.

2-18 分析 该题可由牛顿第二定律求解.在取自然坐标的情况下,沿圆弧方向的加速度就是切向加速度at,与其相对应的外力Ft是重力的切向分量mgsinα,而与法向加速度an相对应的外力是支持力FN 和重力的法向分量mgcosα.由此,可分别列出切向和法向的动力学方程Ft=mdv/dt和Fn=man .由于小球在滑动过程中加速度不是恒定的,因此,需应用积分求解,为使运算简便,可转换积分变量. 倡该题也能应用以小球、圆弧与地球为系统的机械能守恒定律求解小球的速度和角速度,方法比较简便.但它不能直接给出小球与圆弧表面之间的作用力.

解 小球在运动过程中受到重力P 和圆轨道对它的支持力FN .取图(b)所示的自然坐标系,由牛顿定律得

(1) (2)

由 ,得 ,代入式(1),并根据小球从点A 运动到点C 的始末条件,进行积分,有 得

则小球在点C 的角速度为 由式(2)得

由此可得小球对圆轨道的作用力为 负号表示F′N 与en 反向.

2-19 分析 运动学与动力学之间的联系是以加速度为桥梁的,因而,可先分析动力学问题.物体在作圆周运动的过程中,促使其运动状态发生变化的是圆环内侧对物体的支持力FN 和环与物体之间的摩擦力Ff ,而摩擦力大小与正压力FN′成正比,且FN与FN′又是作用力与反作用力,这样,就可通过它们把切向和法向两个加速度联系起来了,从而可用运动学的积分关系式求解速率和路程.

解 (1) 设物体质量为m,取图中所示的自然坐标,按牛顿定律,有

由分析中可知,摩擦力的大小Ff=μFN ,由上述各式可得

取初始条件t =0 时v =v 0 ,并对上式进行积分,有

(2) 当物体的速率从v 0 减少到1/2v 0时,由上式可得所需的时间为

物体在这段时间内所经过的路程

2-20 分析 物体在发射过程中,同时受到重力和空气阻力的作用,其合力是速率v 的一次函数,动力学方程是速率的一阶微分方程,求解时,只需采用分离变量的数学方法即可.但是,在求解高度时,则必须将时间变量通过速度定义式转换为位置变量后求解,并注意到物体上升至最大高度时,速率应为零.

解 (1) 物体在空中受重力mg和空气阻力Fr =kv 作用而减速.由牛顿定律得 (1)

根据始末条件对上式积分,有

(2) 利用 的关系代入式(1),可得

分离变量后积分 故

讨论 如不考虑空气阻力,则物体向上作匀减速运动.由公式 和 分别算得t≈6.12s和y≈184 m,均比实际值略大一些.

2-21 分析 由于空气对物体的阻力始终与物体运动的方向相反,因此,物体在上抛过程中所受重力P 和阻力Fr 的方向相同;而下落过程中,所受重力P 和阻力Fr 的方向则相反.又因阻力是变力,在解动力学方程时,需用积分的方法.

解 分别对物体上抛、下落时作受力分析,以地面为原点,竖直向上为y 轴(如图所示).(1) 物体在上抛过程中,根据牛顿定律有

依据初始条件对上式积分,有

物体到达最高处时, v =0,故有

(2) 物体下落过程中,有 对上式积分,有 则

2-22 分析 该题依然是运用动力学方程求解变力作用下的速度和位置的问题,求解方法与前两题相似,只是在解题过程中必须设法求出阻力系数k.由于阻力Fr =kv2 ,且Fr又与恒力F 的方向相反;故当阻力随速度增加至与恒力大小相等时,加速度为零,此时速度达到最大.因此,根据速度最大值可求出阻力系数来.但在求摩托车所走路程时,需对变量作变换.

解 设摩托车沿x 轴正方向运动,在牵引力F和阻力Fr 同时作用下,由牛顿定律有 (1)

当加速度a =dv/dt =0 时,摩托车的速率最大,因此可得 k=F/vm2 (2) 由式(1)和式(2)可得 (3)

根据始末条件对式(3)积分,有 则

又因式(3)中 ,再利用始末条件对式(3)积分,有 则

2-23 分析 如图所示,飞机触地后滑行期间受到5 个力作用,其中F1为空气阻力, F2 为空气升力, F3 为跑道作用于飞机的摩擦力,很显然飞机是在合外力为变力的情况下作减速运动,列出牛顿第二定律方程后,用运动学第二类问题的相关规律解题.由于作用于飞机的合外力为速度v的函数,所求的又是飞机滑行距离x,因此比较简便方法是直接对牛顿第二定律方程中的积分变量dt 进行代换,将dt 用 代替,得到一个有关v 和x 的微分方程,分离变量后再作积分. 解 取飞机滑行方向为x 的正方向,着陆点为坐标原点,如图所示,根据牛顿第二定律有 (1) (2) 将式(2)代入式(1),并整理得

分离变量并积分,有

得飞机滑行距离 (3)

考虑飞机着陆瞬间有FN=0 和v=v0 ,应有k2v02 =mg,将其代入(3)式,可得飞机滑行距离x 的另一表达式

讨论 如飞机着陆速度v0=144 km?6?1h-1 ,μ=0.1,升阻比 ,可算得飞机的滑行距离x =560 m,设计飞机跑道长度时应参照上述计算结果.

2-24 分析 如同习题2 -5 分析中指出的那样,可对木箱加上惯性力F0 后,以车厢为参考系进行求解,如图所示,此时木箱在水平方向受到惯性力和摩擦力作用,图中a′为木箱相对车厢的加速度. 解 由牛顿第二定律和相关运动学规律有 F0 -Ff=ma -μmg=ma′ (1) v′ 2 =2a′L (2)

联立解(1)(2)两式并代入题给数据,得木箱撞上车厢挡板时的速度为

2-25 分析 如以加速运动的电梯为参考系,则为非惯性系.在非惯性系中应用牛顿定律时必须引入惯性力.在通常受力分析的基础上,加以惯性力后,即可列出牛顿运动方程来.

解 取如图(b)所示的坐标,以电梯为参考系,分别对物体A、B 作受力分析,其中F1 =m1a,F2 =m2a 分别为作用在物体A、B 上的惯性力.设ar为物体相对电梯的加速度,根据牛顿定律有 (1) (2)

(3) 由上述各式可得

由相对加速度的矢量关系,可得物体A、B 对地面的加速度值为

a2 的方向向上, a1 的方向由ar 和a 的大小决定.当ar <a,即m1g -m2g -2m2 a>0 时,a1 的方向向下;反之, a1 的方向向上.

2-26 分析 这类问题可应用牛顿定律并采用隔离体法求解.在解题的过程中必须注意: (1) 参考系的选择.由于牛顿定律只适用于惯性系,可选择地面为参考系(惯性系).因地面和斜面都是光滑的,当滑块在斜面上下滑时,三棱柱受到滑块对它的作用,也将沿地面作加速度为aA 的运动,这时,滑块沿斜面的加速度aBA ,不再是它相对于地面的加速度aB 了.必须注意到它们之间应满足相对加速度的矢量关系,即aB =aA +aBA .若以斜面为参考系(非惯性系),用它求解这类含有相对运动的力学问题是较为方便的.但在非惯性系中,若仍要应用牛顿定律,则必须增添一惯性力F,且有F =maA . (2) 坐标系的选择.常取平面直角坐标,并使其中一坐标轴方向与运动方向一致,这样,可使解题简化.

(3) 在分析滑块与三棱柱之间的正压力时,要考虑运动状态的影响,切勿简单地把它视为滑块重力在垂直于斜面方向的分力mgcos α,事实上只有当aA =0 时,正压力才等于mgcos α.

解1 取地面为参考系,以滑块B 和三棱柱A 为研究对象,分别作示力图,如图(b)所示.B 受重力P1 、A 施加的支持力FN1 ;A 受重力P2 、B 施加的压力FN1′、地面支持力FN2 .A 的运动方向为Ox 轴的正向,Oy 轴的正向垂直地面向上.设aA 为A 对地的加速度,aB 为B 对的地加速度.由牛顿定律得 (1) (2) (3)

(4)

设B 相对A 的加速度为aBA ,则由题意aB 、aBA 、aA 三者的矢量关系如图(c)所示.据此可得

(5) (6)

解上述方程组可得三棱柱对地面的加速度为

滑块相对地面的加速度aB 在x、y 轴上的分量分别为

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4