单元素养评价(一)
(第六章) (120分钟 150分)
一、单项选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求的)
1.(2019·龙岩高二检测)在△ABC中,A=60°,B=75°,a=10,则c等于
A.5 B.10 C. D.5
【解析】选C.因为A=60°,B=75°, 所以C=180°-A-B=45°,所以由正弦定理知
c===.
【加练·固】
△ABC的内角A,B,C的对边分別为a,b,c,已知a=,c=2,cos A=,则b= ( A. B.
C.2 D.3
【解析】选D.由余弦定理得4+b2
-2×2bcos A=5, 整理得3b2
-8b-3=0, 解得b=3或b=-(舍)
2.设x,y∈R,向量a=(x,1),b=(1,y),c=(2,-4),且a⊥c,b∥c,则|a+b|=
A. B. C.2 D.10
【解析】选B.由a⊥c得a·c=2x-4=0,所以x=2, 由b∥c得1×(-4)=2y,所以y=-2,
)
)
)
( ( 于是a=(2,1),b=(1,-2),a+b=(3,-1),从而|a+b|=.
【加练·固】 已知向量=(1,1),
=(2,3),则下列向量与
垂直的是 ( )
A.a=(3,6) B.b=(8,-6) C.c=(6,8) D.d=(-6,3) 【解析】选D.
=
-=(1,2),(1,2)·(-6,3)=1×(-6)+2×3=0.
3.如图所示,在正方形ABCD中,E为AB的中点,F为CE的中点,则=
( )
A.
+
B.
+
C.+ D.+
【解析】选D.根据题意得:=(+),又=+,=,所以
=(++)=+.
【加练·固】
如图,在△ABC中,BE是边AC的中线,O是边BE的中点,若
=a,
=b,则
= ( )
A.a+b B.a+b
C.a+b D.a+b
【解析】选D.=+=+
=+(-)=+
=+=a+b.
4.(2019·全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c,已知asin A- bsin B=4csin C,cos A=-,则= ( ) A.6
B.5
C.4
2
2
D.3
2
【解析】选A.由已知及正弦定理可得a-b=4c,由余弦定理推论可得-=
cos A=【加练·固】
,所以=-,所以=,所以=×4=6.
在△ABC中,sin A∶sin B∶sin C=2∶3∶3,则cos B= ( )
A. B. C. D.
【解析】选A.由 sin A∶sin B∶sin C=2∶3∶3, 结合正弦定理可得a∶b∶c=2∶3∶3,