2.技能目标:掌握“如果分式的分母的值为零,则分式没有意义”;“如果分式的分子为零,而分母不为零时,分式的值为零”,会推断分式的分母中所含字母的取值范围。
3.能力目标:初步掌握整式和分式的思想方法,培养学生分析、归纳、概括的能力。
4.情感目标:通过学习分式的意义,培养学生的逆向思维能力和学生的辩证唯物主义观点。
(四)教学重点与难点
本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点。 重点:分式的意义:分式与除法的关系;
难点:掌握“如果分式的分母的值为零,则分式没有意义”;“如果分式的分子为零,而分母不为零时,分式的值为零”。 二、教学方法与学法
本节课教师将以引路的形式,运用启发式的教学方法,带着学生去发现和探究新知识,教师在实施教学的过程中注意学生的观察能力和语言表达能力的培养,分析、归纳、概括,通过不断的实践和认识,让学生全面地掌握分式的意义,让学生体会到数学不是一门枯燥的学科,对学习数学充满信心。
三、教学过程
本节课的教学我主要分下面这样几个环节: (一)设问激疑,以旧探新,类比联想,形成概念 教师先问学生两个问题,帮助学生回忆分数。
思考:请各位同学将下列各题用一个恰当的分数来表示: 1.一段绳子长3米,把它平均分成4份,则每份长是多少
2.甲地到乙地的路程是180千米,一辆汽车行驶7小时,从甲地到达乙地,这辆汽车平均每小时的速度是多少
然后教师再请学生看以下两个问题。
思考:1.一段绳子长3米,把它平均分成份,则每份长是多少
2.甲地到乙地的路程是180千米,一辆汽车行驶x小时,从甲地到乙地,这
辆汽车平均每小时的速度是多少
3180学生通过运算、比较,可以发现、是一种新的代数式。教师介绍这种新的
xx代数式,我们称它为“分式”,从而引出课题“分式的意义”。
接着,教师在此基础上引导学生类比联想,给出分式的概念。即
b两个数a,b相除可以用“a?b”或“”来表示,如果两个代数式A,B相除我
aA们也可以用“A÷B” 或“”来表示。
B分式的概念:两个整式A,B相除时,可以表示为的形式,如果分母B中含有字
A母,那么叫做分式。如:分母中都含有字母,都是分式。
B(这样的安排可以刺激学生复习和回忆前面所学的知识,选择能作为新知识的
生长点的旧知识,将新知识的各因素联系起来,并以组织好的方式呈现给学生,使学生看到了知识的发展过程的同时,也学到了新的知识。通过比较概括,是新旧知识相联系,通过启发,激活学生头脑中的旧知识,调动学生主动学习的心理倾向。使他们对分式的概念先有一个粗略的总体认识,为下一步的教学作好铺垫,使学生对反映新知识内容的文字、符号先有一个表层的认识。)
在教师与学生共同得到分式的概念后,紧接着教师给出:
1例1:现有以下各式:2,x,x?y,ab,,x,n,请同学们任取两个进行组
3合,使组合后的代数式为分式。
在这里我们可以发现答案并不唯一,通过对分式的概念的理解,让学生亲自动手,亲身体验,展开想象的翅膀,组合成的代数式将一个个的呈现在我们眼前,激发学生兴趣,调动学生学习的主动性。然后教师通过学生所给出的答案加以分析,指出
ab类似这种形式的,虽然也有分母,但分母中不含有字母,所以不是分式,而是整
2式。指出判断一个代数式是不是分式,不是决定于这个式子里是否含分数线,关键要看分母中是否含有字母。最后指出“整式和分式统称为有理式”。
根据分式的概念,我们还可以看到分数线具有双重意义:(1)表示括号;(2)表示除号。所以为了让学生体会到这一点,教师给出:
例2:用分式表示下列各式:
(1)?x?2??y; (2)?1?7x??3xy; (3)?2x?1???x2?1?; (4) 2x:?y?1?;
(二)观察感知,启发引导,指导运用,巩固概念
在掌握了分式的概念以后,教师通过“要分数有意义,只要使分母不为零”让学生很自然得过渡到“要分式有意义,也只要使分母不为零”即可的思想。
教师抓住这一契机,给出:
x?1有意义 4x?11学生根据之前的结论,得出只要分母4x?1?0,即x?时,这个分式有意义。
4教师顺水推舟,再给出以下分式,让学生讨论,这时当x取什么值时,分式有意
例3:当x取什么值时,分式:
义
x?12xx?1x2?x(1); (2)2; (3); (4)
x?1x?22x?5x?1讲到这里,教师又乘胜追击,问学生:
例4:那么以上各分式,当x取什么值时,分式无意义
那么我们说只要分母为零时,这个分式就无意义。请学生给出每一题的正确结论。
(三)变式训练,讨论辨析,揭示内涵,深化概念
在掌握了如何求当未知数取什么值时,分式是有意义还是无意义以后,教师将带领学生进入本节课的另一个难点,对学生来讲思维又将象每个跳动的音符一样活跃起来了。
教师问学生:
例5:同样的,以上各分式,当x取什么值时,分式的值为零
由于学生对新概念的理解在本质方面还是肤浅的,很多学生只会考虑满足分子为零即可,所以教师给学生几分钟的讨论时间,这时就有考虑问题较周到的学生通过(3)(4)两个题发现问题并不是那么简单,找出了症结。这样教师就能及时得对症下药,指出“分式的值为零必须在分式有意义的前提下进行的。因此,分式的值为零必须满足两个条件:
(1)分子的值为零;(2)同时分母的值不等于零。 (四)反思小结,自主评价,培养能力,激励奋进
一节课已进入尾声,教师指导学生反思:我们是如何得到分式概念的?分式和我们以前学过的什么知识有联系?我们用了哪些方法进一步揭示了分式意义的本质?在以上的学习过程中你的收获有哪些?
教师整理学生的发言,归纳小结: (1)整式和分式统称为有理式
(2)分式的概念:两个整式A,B相除时,可以表示为有字母,那么叫做分式。
(3)要分式有意义,也只要使分母不为零 (4)当分母为零时,分式就无意义
(5)分式的值为零必须满足两个条件:(1)分子的值为零;(2)同时分母的值不等于零。
(6)?是圆周率,它代表的是一个常数。
(7)在开放题中,强调根据整式、分式的定义进行编制。 (五)分层作业 (1)练习册15.1 (2)x取何值时,分式四、评价分析
x?2的值为负数? 3?2xA的形式,如果分母B中含B1.学生在学习新的数学概念时,新的信息对学生来讲基本上是陌生的,零碎的和彼此孤立的,在课堂教学中,教师的任务就是为学生的发现、创造提供自由广阔的天
地,就是在于引导学生探索获得知识、技能的途径和方法。因此,利用旧知探索新知,逐步深入,引发学生思维冲突,将学生带入发现概念的最近发展区。
2.在教学过程中,很多学生误认为由旧知识获得新知识后,对新知识的理解就已经到位了,这时需要教师引导学生探求新旧知识间的深层联系和实质区别,去揭示这种内在的或隐藏的联系与区别,纠正其对概念的表面性和片面性的理解,在头脑中获得新的痕迹。
3.小结部分通过师生共同反思,目的是为了更好地促进新旧知识之间的联系,使新知识与学生头脑中原有的旧知识建立逻辑性的稳固联系,从而形成新的认知结构。同时,体现在学习策略的选择、实施、调整等方面,从整体上也提高了学生的认知水平。学生通过反思,不仅可以梳理在学习过程中对概念的理解程度,还可以评价自己在认知加工过程中所闪烁出的思维火花,领悟其中的数学思想和方法,对提高数学思
维能力起到了积极的作用平行四边形的判定(1) 各位领导、老师们,大家好,我是福清市姚世雄中学教师唐孝强。今天我说课的内容是人教版义务教育新新课程标准数学八年级下册第十九章第二节《平行四边形的判定》第一课时。下面谈一下本节课的设想。
一、教材分析
(一)教材所处地位和作用
《平行四边形的判定》紧接《平行四边形的性质》一节。纵观整个初中平面几何教材,它是在学生掌握了平行线、三角形及简单图形的平移和旋转等平面几何知识,并且具备了初步的观察、操作等活动经验的基础上讲授的。这一节课既是前面所学知识的继续,又是后面学习菱形、矩形及正方形等知识的基础,起着承前启后的作用。
(二)教学目标分析
根据学生已有的认识基础及本课教材的地位和作用,依据新课程标准确定本课教学目标为: 1.知识与技能
通过探索平行四边形常用的判定条件的过程,掌握平行四边形常用的判定方法。
2.数学思考
(1)通过观察、实验、猜想、验证、推理、交流等数学活动,发展学生的合情推理能力和动手操作能力及应用数学的意识和能力。
(2)使学生掌握证明与举反例是判断一个数学命题是否成立的基本方法。 3.解决问题
通过平行四边形判别条件的探索过程,丰富学生从事数学活动的经验与体验,感受感受数学思考过程的条理性及解决问题的策略的多样性,发展学生的实践能力及创新意识。
4.情感态度与价值观
培养学生合情推理能力,以及严谨的书写表达,体会几何思维的真正内涵。
(三)教学重点难点分析
行四边形的判定方法涉及平行四边形元素的各方面,同时它又与平行四边形的性质联系,判定一个四边形是否为平行四边形是利用平行四边形性质解决其他问题的基础,所以平行四边形的判定定理是本节的重点。平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点。因此在例题讲解时,采用启发式教学模式,根据题目中具体条件结合图形引导学生根据分析法解题程序从条件或结论出发,由学生自己去思考,去分析,充分发挥学生的主体作用,对学生灵活掌握熟练应用各种判定定理会有帮助。 二、教法学法分析
鉴于教材特点及八年级学生的年龄特点、心理特征和认知水平,在教学过程中引导学生通过观察、思考、探索、交流获得知识,形成技能,在教学过程中注意创设思维情境,坚持二主方针(学生为主体,教师为主导),让学生在老师的引导下自始至终处于一种积极思维、主动探究的学习状态。使课堂洋溢着轻松和谐的气氛,探索进取的气氛,而教师在其中当好课堂教学的组织者、决策者、创造者和参与者。同时借助实物教具进行演示,以增加课堂容量和教学的直观性。
本堂课立足于学生的“学”,要求学生多动手,多观察,让学生经历发现,说明,完善的过程,培养其操作说理、观察归纳的能力。从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上要采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体验参与的乐趣,成功的喜悦。
三、教学程序设计
(一)回顾交流,逆向思索
在复习了平行四边形定义和性质,提出判定平行四边形的方法引导学生探究。 设计意图:从旧知识问题引入新课, 提出具有启发性的问题,能够调动学生的积极思维,激起学生的学习欲望,也为下面探究平行四边形的判定方法打下基础。着名教育家苏霍姆林斯基曾经说过:如果教师不想方设法使学生进入情绪高昂和智力振奋的内心状态,就急于传授知识,那么这种知识只能使人产生冷漠的态度,而不动感情的脑力劳动就会带来疲惫。 (二)探索方法,发现新知
1.提出问题后我安排了如下两组探索题