山东省济宁市梁山一中高中高中数学必修3教案3.1.1《随机事件的概率》(人教A)

第三章 概率

本章教材分析

在自然界与人类的社会活动中会出现各种各样的现象,既有确定性现象,又有随机现象.随机现象在日常生活中随处可见,概率是研究随机现象规律的学科,它为人们认识客观世界提供了重要的思维模式和解决问题的方法.概率统计的应用性强,有利于培养学生的应用意识和动手能力.

我们知道,概率是统计学的理论基础,但本书的内容安排是先统计后概率.这样的安排,一方面是考虑到统计与概率学科发展的历史是先有统计,为了研究统计结论的可靠性问题,概率得到了发展;另一方面是考虑到学生的学习心理,统计在前,使得学生在学习过程中可以接触到大量统计案例,学习过程中的实践性可以大大增强.

本章包括随机事件的概率的统计定义,概率的意义及其基本性质;古典概型的特征及概率的计算公式;几何概型的特征及概率的计算公式;利用随机模拟的方法估计随机事件的概率.

本章包括3节,教学约需8课时,课时分配如下(仅供参考): 3.1 3.2 3.3 本章复习 3.1 随机事件的概率

3.1.1 随机事件的概率

整体设计

教学分析

概率是描述随机事件发生可能性大小的量度,它已渗透到人们的日常生活中,例如:彩票的中奖率,产品的合格率,天气预报、台风预报等都离不开概率.概率的准确含义是什么呢?我们用什么样的方法获取随机事件的概率,从而激发学生学习概率的兴趣?本节课通过学生亲自动手试验,让学生体会随机事件发生的随机性和随机性中的规律性,通过试验,观察随机事件发生的频率,可以发现随着实验次数的增加,频率稳定在某个常数附近,然后再给出概率的定义.在这个过程中,体现了试验、观察、探究、归纳和总结的思想方法,是新课标理念的具体实施. 三维目标

1.通过在抛硬币、抛骰子的试验中获取数据,了解随机事件、必然事件、不可能事件的概念. 2.通过获取数据,归纳总结试验结果,发现规律,正确理解事件A出现的频率的意义,真正做到在探索中学习,在探索中提高.

3.通过数学活动,即自己动手、动脑和亲身试验来理解概率的概念,明确事件A发生的频率fn(A)与事件A发生的概率P(A)的区别与联系,体会数学知识与现实世界的联系. 重点难点 教学重点:

1.理解随机事件发生的不确定性和频率的稳定性. 2.正确理解概率的意义. 教学难点:

1.对概率含义的正确理解. 2.理解频率与概率的关系. 课时安排

随机事件的概率 古典概型 几何概型 约3课时 约2课时 约2课时 约1课时 1课时

教学过程

导入新课

思路1

日常生活中,有些问题是很难给予准确无误的回答的.例如,你明天什么时间起床?7:20在某公共汽车站候车的人有多少?你购买本期福利彩票是否能中奖?等等.尽管没有确切的答案,但大体上围绕一个数值在变化,这个数值就是概率.教师板书课题:随机事件的概率.

思路2

1名数学家=10个师

在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力.这句话有一个非同寻常的来历.

1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战”搞得盟军焦头烂额.

为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后发现,舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性.一定数量的船(为100艘)编队规模越小,编次就越多(为每次20艘,就要有5个编次),编次越多,与敌人相遇的概率就越大.

美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口.结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降为1%,大大减少了损失,保证了物资的及时供应.

在自然界和实际生活中,我们会遇到各种各样的现象.如果从结果能否预知的角度来看,可以分为两大类:一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定性现象;另一类现象的结果是无法预知的,即在一定的条件下,出现那种结果是无法预先确定的,这类现象称为随机现象.随机现象是我们研究概率的基础,为此我们学习随机事件的概率. 推进新课 新知探究 提出问题

(1)什么是必然事件?请举例说明. (2)什么是不可能事件?请举例说明. (3)什么是确定事件?请举例说明. (4)什么是随机事件?请举例说明.

(5)什么是事件A的频数与频率?什么是事件A的概率? (6)频率与概率的区别与联系有哪些?

活动:学生积极思考,教师引导学生考虑问题的思路,结合实际的情形分析研究.(1)导体通电时,发热;抛一块石头,下落;“如果a>b,那么a-b>0”;这三个事件是一定要发生的.但注意到有一定的条件.(2)在常温下,焊锡熔化;在标准大气压下且温度低于0 ℃时,冰融化;“没有水,种子能发芽”;这三个事件是一定不发生的.但注意到有一定的条件.(3)抛一块石头,下落;“如果a>b,那么a-b>0”;在标准大气压下且温度低于0 ℃时,冰融化;“没有水,种子能发芽”;这四个事件在一定的条件下是一定要发生的或一定不发生的.是确定的,不是模棱两可的.(4)掷一枚硬币,出现正面;某人射击一次,中靶;从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签;“某电话机在1分钟内收到2次呼叫”;这四个事件在一定的条件下是或者发生或不一定发生的,是模棱两可的.(5)做抛掷一枚硬币的试验,观察它落地时哪一个面朝上.通过学生亲自动手试验,突破学生理解的难点:“随机事件发生的随机性和随机性

中的规律性”.通过试验,观察随机事件发生的频率,可以发现随着实验次数的增加,频率稳定在某个常数附近,然后再给出概率的定义.在这个过程中,重视了掌握知识的过程,体现了试验、观察、探究、归纳和总结的思想方法,也体现了新课标的理念. 具体如下:

第一步每个人各取一枚硬币,做10次掷硬币试验,记录正面向上的次数和比例,填在下表中:

姓名 试验次数 正面朝上总次数 正面朝上的比例 思考

试验结果与其他同学比较,你的结果和他们一致吗?为什么? 第二步 由组长把本小组同学的试验结果统计一下,填入下表. 组次 试验总次数 正面朝上总次数 正面朝上的比例 思考 与其他小组试验结果比较,正面朝上的比例一致吗?为什么?

通过学生的实验,比较他们实验结果,让他们发现每个人实验的结果、组与组之间实验的结果不完全相同,从而说明实验结果的随机性,但组与组之间的差别会比学生与学生之间的差别小,小组的结果一般会比学生的结果更接近0.5.

第三步 用横轴为实验结果,仅取两个值:1(正面)和0(反面),纵轴为实验结果出现的频率,画出你个人和所在小组的条形图,并进行比较,发现什么? 第四步 把全班实验结果收集起来,也用条形图表示. 思考

这个条形图有什么特点?

引导学生在每组实验结果的基础上统计全班的实验结果,一般情况下,班级的结果应比多数小组的结果更接近0.5,从而让学生体会随着实验次数的增加,频率会稳定在0.5附近.并把实验结果用条形图表示,这样既直观易懂,又可以与第二章统计的内容相呼应,达到温故而知新的目的.

第五步 请同学们找出掷硬币时“正面朝上”这个事件发生的规律性. 思考

如果同学们重复一次上面的实验,全班汇总结果与这一次汇总结果一致吗?为什么? 引导学生寻找掷硬币出现正面朝上的规律,并让学生叙述出现正面朝上的规律性:随着实验次数的增加,正面朝上的频率稳定在0.5附近.由特殊事件转到一般事件,得出下面一般化的结论:随机事件A在每次试验中是否发生是不能预知的,但是在大量重复实验后,随着次数的增加,事件A发生的频率会逐渐稳定在区间[0,1]中的某个常数上.从而得出频率、概率的定义,以及它们的关系.一般情况下重复一次上面的实验,全班汇总结果与这一次汇总结果是不一致的,这更说明随机事件的随机性.

进一步总结事件的频数与频率,概括出概率的概念.(6)通过(5)的概括和总结写出频率与概率的区别与联系. 讨论结果:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件(certain event),简称必然事件. (2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件(impossible event),简称不可能事件.

(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件.

(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4