2018年中考二次函数压轴题汇编

2018年中考二次函数压轴题汇编

2.如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.

(1)求抛物线的表达式;

(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.

(3)如图2,连接BC,PB,PC,设△PBC的面积为S. ①求S关于t的函数表达式;

②求P点到直线BC的距离的最大值,并求出此时点P的坐标.

3.如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC. (1)求线段OC的长度;

(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;

(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.

第1页(共107页)

4.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4. (1)求抛物线的函数表达式.

(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?

(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.

5.如图,点P为抛物线y=x2上一动点.

(1)若抛物线y=x2是由抛物线y=(x+2)2﹣1通过图象平移得到的,请写出平移的过程;

(2)若直线l经过y轴上一点N,且平行于x轴,点N的坐标为(0,﹣1),过点P作PM⊥l于M.

①问题探究:如图一,在对称轴上是否存在一定点F,使得PM=PF恒成立?若存在,求出点F的坐标:若不存在,请说明理由.

②问题解决:如图二,若点Q的坐标为(1,5),求QP+PF的最小值.

第2页(共107页)

6.已知直线y=x+3与x轴、y轴分别相交于A、B两点,抛物线y=x2+bx+c经过A、B两点,点M在线段OA上,从O点出发,向点A以每秒1个单位的速度匀速运动;同时点N在线段AB上,从点A出发,向点B以每秒速运动,连接MN,设运动时间为t秒 (1)求抛物线解析式;

(2)当t为何值时,△AMN为直角三角形;

(3)过N作NH∥y轴交抛物线于H,连接MH,是否存在点H使MH∥AB,若存在,求出点H的坐标,若不存在,请说明理由.

个单位的速度匀

7.如图,抛物线经过原点O(0,0),点A(1,1),点(1)求抛物线解析式;

(2)连接OA,过点A作AC⊥OA交抛物线于C,连接OC,求△AOC的面积; (3)点M是y轴右侧抛物线上一动点,连接OM,过点M作MN⊥OM交x轴于点N.问:是否存在点M,使以点O,M,N为顶点的三角形与(2)中的△AOC相似,若存在,求出点M的坐标;若不存在,说明理由.

第3页(共107页)

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4