综合所得条件,当K?1 时,使系统稳定的参数取值范围如图解3-18中阴影部所示。
3-23解 G(s)?由静态误差系数法
?K?787(s?1) ?2s(s?4)(s?2s?2)?v?1r(t)?1(t)时, ess?0
A8r(t)?t时, ess???1.14
K7r(t)?t2时, ess??
3-24解 G(s)?K
s(T1s?1)(T2s?1)?K ??v?1r(t)?1(t)时, essr?0;
1s(T2s?1)?(T1s?1)E(s)?en1(s)???
KN1(s)s(T1s?1)(T2s?1)?K1?s(T1s?1)(T2s?1)?n1(t)?1(t)时, essn1?lims?en1(s)N1(s)?lims?en1(s)s?0s?011?? sK1(T2s?1)?s(T1s?1)E(s)?en2(s)???
KN2(s)s(T1s?1)(T2s?1)?K1?s(T1s?1)(T2s?1)?n2(t)?1(t)时, essn2?lims?en1(s)N2(s)?lims?en2(s)s?0s?01?0 s在反馈比较点到干扰作用点之间的前向通道中设置积分环节,可以同时减小由输入和干扰因引起的稳态误差。
K(?s?1)(T1s?1)(T2s?1)K(?s?1)3-25解 G(s)? ?K0K(?s?1)(T1s?1)(T2s?1)?K0K(?s?1)1?(T1s?1)(T2s?1) ?K(?s?1) 2T1T2s?(T1?T2?K0K?)s?(1?K0K)依题意应有:??1?K0K?0 联立求解得
?T1?T2?K0K??0?K0?1K ????T1?T2此时系统开环传递函数为
G(s)?K(T1?T2)s?K 2T1T2s考虑系统的稳定性,系统特征方程为
D(s)?T1T2s2?K(T1?T2)s?K?0
当 T1,T2,K?0时,系统稳定。
3-28解 (1)G(s)??K?525 ?
s(s?5)?v?125??
s(s?5) Kp?limG(s)?lims?0s?025?5
s?0s?0s?525sKa?lims2G(s)?lim?0
s?0s?0s?5Kv?limsG(s)?lim r1(t)?1(t)时, ess1?1?0
1?Kp r2(t)?2t时, ess2?A2??0.4 Kv5A1??? Ka0r3(t)?0.5t2时,ess3?由叠加原理 ess?ess1?ess2?ess3?? (2) 题意有
?e(s)?1s(s?5)?2
1?G(s)s?5s?25233用长除法可得 ?e(s)?C0?C1s?C2s?C3s???0.2s?0.008s??
C0?0C1?0.2 r??(t)?1C2?0C3?0.008r???(t)?0?? es(10)?2.4
3-32解 (1)无顺馈时,系统误差传递函数为 ?n(s)?r(t)?1?2t?0.5t2r?(t)?2?t
?? es(t)?C0r(t)?C1r?(t)?C2r??(t)?C3r???(t)???0.4?0.2t
C(s)s?5s?5??2 N(s)(s?1)(s?5)?20s?6s?25(2)cn(?)?lims?n(s)?N(s)?lims?n(s)?s?0s?0??? s5(3)有顺馈时,系统误差传递函数为
1?20K?1?C(s)s?1?s?25????s?5?20K
?n(s)??20N(s)s2?6s?251?(s?1)(s?5)令 cn(?)?lims?n(s)?N(s)?lims?n(s)?s?0s?0??5?20K?????=0 s?25?得 K?0.25
s?a3-34解 G(s)?v
s(Ts?1)?KK?a ?v待定?由 r(t)?1(t)时,ess?0,可以判定:v?1
K(s?a)K(s?a)sv(Ts?1)?v ?(s)?
s?as(Ts?1)?s?a1?vs(Ts?1)D(s)?Tsv?1?sv?s?a
系统单位阶跃响应收敛,系统稳定,因此必有: v?2。 根据单位阶跃响应曲线,有
h(?)?lims?(s)?R(s)?lims?s?0s?01K(s?a)?v?K?10 ss(Ts?1)?s?asK(s?a)Ks2?aKs h?(0)?k(0)?lims?(s)?limv?limv?1?10 vs??s??s(Ts?1)?s?as??Ts?s?s?a当T?0时,有
k(0)?limKss??Tsv?12?K?10??10 可得 ?v?1
?T?1?当T?0时,有
?K?10Ks?k(0)?limv?10 可得 ?v?2
s??s?T?0?21010Ks(s?1)?3-38解 (1) G(s)?K
10?ss(s?10??1)1?s(s?1)?n2G(s)10K(2) ?(s)? ??21?G(s)s2?(10??1)s?10Ks2?2??ns??n??o?e???1??2?16.3oo?o?(3)由 ? 联立解出
tp??1??n1??2?2由(2) 10K??n?3.632?13.18,得出
???0.5???3.63 ?n????0.263K?1.318。
(4)
Kv?limsG(s)?s?010K13.18??3.63
10??110?0.263?1第四章
4-1解 若点s1在根轨迹上,则点s1应满足相角条件?G(s)H(s)??(2k?1)?,如图解4-1所示。
对于s??1?j3,由相角条件
?G(s1)H(s1)?
0??(?1?j3?1)??(?1?j3?2)??(?1?j3?4)?
0??2??3??6???
满足相角条件,因此s1??1?j3在根轨迹上。将s1代入幅值条件:
G(s1)H(s1)?K*?1?j3?1??1?j3?2??1?j3?4?1
K*3? 解出 : K?12 , K?82*4-2 解 根轨如图解4-2所示:
图解4-2 根轨迹图 K?4-5解 ⑴ G(s)H(s)? 2s(s?8s?20)① 实轴上的根轨迹: ???,0?
② 渐近线:
0?(?4?j2)?(?4?j2)8???????a33 ?(2k?1)???????,?a?33? ③分离点:
111???0 dd?4?j2d?4?j2解之得:d??2,d??3.33。
④与虚轴交点:D(s)?s?8s?20s?K32?
把s?j?代入上方程,整理,令其实、虚部分别为零得:
?Re(D(j?))?K??8?2?0 ?3?Im(D(j?))?20????0???0解得: ??
K?0?⑤起始角:由相角条件 根轨迹如图解4-5(a)所示。
?????25 ????K?16023?p??63?,?p?63?。