人教版 数学教案 八年级下册 第十九章 19.2.3一次函数与方程不等式
第十九章 一次函数 19.2 一次函数
19.2.3一次函数与方程、不等式
1 教学目标
1.1 知识与技能:
[1] 认识一次函数与一次方程、 一元一次不等式之间的联系。会用函数观点解释方程和不等
式及其解(解集)的意义;
[2] 经历用函数图象表示方程、不等式解的过程,进一步体会“以形表示数,以数解释形”的
数形结合思想。 1.2过程与方法:
[1] 引导学生经历探究一次函数与一元一次方程、一元一次不等式之间的联系的过程,体会数
形结合、分类、类比、归纳等数学思想方法的运用,积累数学活动经验。
[2] 通过自主探究、小组合作等活动,锻炼学生的自学能力、归纳概括的能力,增强学生间的
合作意识。
1.3 情感态度与价值观:
[1] 通过对一次函数、一次方程与一元一次不等式内在关系的探究,引导学生认识事物部分与
整体的辩证统一关系,培养学生用联系的观点看待数学问题的意识。
2 教学重点/难点
2.1 教学重点
[1] 探究一次函数与一元一次方程、一元一次不等式之间内在关系。 2.2 教学难点
[1] 对一次函数与一元一次方程、一元一次不等式之间关系的揭示。
3 专家建议
从复习函数、方程、不等式的基础知识进入新课,引入部分简单过渡,激发兴趣,为后面作铺垫。一次函数、一元一次方程和一元一次不等式之间的相互转化,从学生对一次函数图象的认识以及通过观察函数图象得出变量的范围,渗透数形结合的思想,由浅入深地把函数、方程、不等式三者联系起来。让学生学会用函数与方程的思想来解决实际问题,通过对实际问题的分析,寻找出变量之间的函数关系,并能利用函数的图象和性质求出实际问题的答案。
4 教学方法 启发式教学
第 1 页 共 1 页
人教版 数学教案 八年级下册 第十九章 19.2.3一次函数与方程不等式
5 教学用具
多媒体课件,教学用直尺、三角板等。
6 教学过程
6.1复习旧知、提出课题
前面我们学习了一次函数。实际上,一次函数是两个变量之间符合一定关系的一种互相对应,互相依存。它与我们七年级学过的一元一次方程,一元一次不等式,二元一次方程组有着必然的联系。
【师】复习一次函数、一元一次方程和一元一次不等式的形式。 【生】师生共同回答。
这节课开始,我们就学着用函数的观点去看待方程(组)与不等式,并充分利用函数图象的直观性,形象地看待方程(组)不等式的求解问题。这是我们学习数学的一种很好的思想方法。 【板书】
第十九章 一次函数 19.2.3 一次函数与方程、不等式 6.2创设情境、讲授新课 [1]
探究一
【师】出示问题:已知一次函数y=2x+1,求当函数值y =3、y =0、y = -1时,自变量x的值。 【师】当y=3时,2x+1等于几?当y =0、y = -1时,2x+1又等于几呢?你能把它们写成一个方程的形式吗?
【生】可以写成2x+1=3,2x+1=0,2x+1=-1的形式。就变成了一元一次方程。
【师】也就是说当一个一次函数y=kx+b,只要确定了y的值,它就变成了一个一元一次方程。 也就是说,每一个一元一次方程都可以看成是一次函数的一种具体情况。
【师】既然一次函数和方程有这样的联系,那么你能从函数的角度对解这三个方程进行解释吗?
【生】思考怎么解释。
【师】适时点拨,可以先做出函数y=2x+1的图像,再来进行解释。 【生】画出一次函数的图象。
【生】上面的三个方程可以看成函数y=2x+1的一种具体情况。 当y=3时,x=1; 当y=0时,x=- ; 当y=-1时,x= -1。
第 2 页 共 2 页
人教版 数学教案 八年级下册 第十九章 19.2.3一次函数与方程不等式
【师】这三个方程的解则刚好是自变量x的一个值。
【师】用函数的观点看:解一元一次方程ax +b =c 就是求当函数值为c 时对应的自变量的值。 【师】当一次函数y=2x+1的函数值为4时,可得到的方程是什么?当一次函数y=2x+1的函数值为-5时,可得到的方程又是什么? 【生】2x+1=4和2x+1=-5。
【师】一元一次方程都可以转化为ax +b =c的形式,求方程2x+1=4的解也就是求函数y=2x+1当 y=4时,自变量x的的值。求方程2x+1=-5的解也就是求函数y=2x+1当 y=-5时,自变量x的的值。 【板书】
解一元一次方程 ax +b =c 就是求当函数值为c 时对应的自变量的值
[2] 小练习
练习1:根据函数y=2x+20的图象,说出它与x轴的交点坐标;说出方程2x+20=0的解.
解:直线y=2x+20与x轴的交点坐标为(-10,0)。 方程的解 x= -10 ,是直线y=2x+20与x轴交点的横坐标。 练习2:根据图象,请写出图象所对应的一元一次方程的解。
第 3 页 共 3 页