第十八章 平行四边形
18.1.1 平行四边形的性质
第一课时 平行四边形的边、角特征 知识点梳理
1、有两组对边分别平行的四边形叫做平行四边形,平行四边形ABCD记作□ABCD。 2、平行四边形的对边相等,对角相等,邻角互补。 3、两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条直线之间的距离。 知识点训练
1.(3分)如图,两张对边平行的纸条,随意交叉叠放在一起,转动其中一张,重合的部分构成一个四边形,这个四边形是________.
2.(3分)如图,在□ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,那么图中共有平行四边形( )
A.6个 B.7个 C.8个 D.9个
3.(3分)在□ABCD中,AB=6 cm,BC=8 cm,则□ABCD的周长为 cm.
4.(3分)用40 cm长的绳子围成一个平行四边形,使其相邻两边的长度比为3∶2,则较长的边的长度为 cm.
5.(4分)在□ABCD中,若∠A∶∠B=1∶5,则∠D= ;若∠A+∠C=140°,则∠D= .
6.(4分)(2014·福州)如图,在□ABCD中,DE平分∠ADC,AD=6,BE=2,则□ABCD的周长是 .
7.(4分)如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=53°,则∠BCE的度数为( )
A.53° B.37° C.47° D.123°
8.(8分)(2013·攀枝花)如图所示,已知在平行四边形ABCD中,BE=DF.
1
求证:AE=CF.
9.(4分)如图,点E,F分别是□ABCD中AD,AB边上的任意一点,若△EBC的面积为10 cm2,则△DCF的面积为 。
10.(4分)如图,梯形ABCD中,AD∥BC,记△ABO的面积为S1,△COD的面积为S2,则S1,S2的大小关系是( )
A.S1>S2 B.S1=S2 C.S1<S2 D.无法比较
11.在□ABCD中,∠A∶∠B∶∠C∶∠D的值可能是( ) A.1∶2∶3∶4 B.1∶2∶2∶1 C.2∶2∶1∶1 D.2∶1∶2∶1
12.如图,将平行四边形ABCD折叠,使顶点D恰落在AB边上的点M处,折痕为AN,那么对于结论:①MN∥BC;②MN=AM,下列说法正确的是( )
A.①②都对 B.①②都错 C.①对②错 D.①错②
13.如图,在□ABCD中,BE⊥CD,BF⊥AD,垂足分别为E,F,CE=2,DF=1,∠EBF=60°,则□ABCD的周长为__.
2
14.(2013·江西)如图,□ABCD与□DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为 。
15.(10分)如图,□ABCD中,F是BC边的中点,连接DF并延长,交AB的延长线于点E.
求证:AB=BE.
16.(12分)在□ABCD中,E为BC边上一点,且AB=AE. (1)求证:△ABC≌△EAD;
(2)若AE平分∠DAB,∠EAC=25°,求∠AED的度数.
17.(14分)如图所示,在△ABC中,AB=AC,延长BC至点D,使CD=BC,点E在边AC上,以CE,CD为邻边作□CDFE,过点C作CG∥AB交EF于点G.连接BG,DE. (1)∠ACB与∠GCD有怎样的数量关系?请说明理由; (2)求证:△BCG≌△DCE.
3