רÌâÄÜÁ¦ÑµÁ·21 ²»µÈʽѡ½²
Ò»¡¢ÄÜÁ¦Í»ÆÆѵÁ·
1.Èôa>0,b>0,ÇÒ.
(1)Çóa3+b3
µÄ×îСֵ;
(2)ÊÇ·ñ´æÔÚa,b,ʹµÃ2a+3b=6?²¢ËµÃ÷ÀíÓÉ.
2.É躯Êýf(x)=+|x-a|(a>0). (1)Ö¤Ã÷:f(x)¡Ý2;
(2)Èôf(3)<5,ÇóaµÄÈ¡Öµ·¶Î§.
3.ÒÑÖª¹ØÓÚxµÄ²»µÈʽm-|x-2|¡Ý1,Æä½â¼¯Îª[0,4]. (1)ÇómµÄÖµ;
(2)Èôa,b¾ùΪÕýʵÊý,ÇÒÂú×ãa+b=m,Çóa2+b2
µÄ×îСֵ.
4.ÒÑÖªº¯Êýf(x)=,MΪ²»µÈʽf(x)<2µÄ½â¼¯. (1)ÇóM;
(2)Ö¤Ã÷:µ±a,b¡ÊMʱ,|a+b|<|1+ab|.
1
5.(2018È«¹ú¢ñ,ÎÄ23)ÒÑÖªf(x)=|x+1|-|ax-1|. (1)µ±a=1ʱ,Çó²»µÈʽf(x)>1µÄ½â¼¯;
(2)Èôx¡Ê(0,1)ʱ²»µÈʽf(x)>x³ÉÁ¢,ÇóaµÄÈ¡Öµ·¶Î§.
¶þ¡¢Ë¼Î¬ÌáÉýѵÁ·
6.ÒÑÖªº¯Êýf(x)=g(x)=af(x)-|x-2|,a¡ÊR.
(1)µ±a=0ʱ,Èôg(x)¡Ü|x-1|+b¶ÔÈÎÒâx¡Ê(0,+¡Þ)ºã³ÉÁ¢,ÇóʵÊýbµÄÈ¡Öµ·¶Î§; (2)µ±a=1ʱ,Çóº¯Êýy=g(x)µÄ×îСֵ.
7.ÒÑÖªº¯Êýf(x)=|x-3|-|x-a|. (1)µ±a=2ʱ,½â²»µÈʽf(x)¡Ü-;
(2)Èô´æÔÚʵÊýa,ʹµÃ²»µÈʽf(x)¡Ýa³ÉÁ¢,ÇóʵÊýaµÄÈ¡Öµ·¶Î§.
8.ÒÑÖªº¯Êýf(x)=-x2
+ax+4,g(x) =|x+1|+|x-1|. (1)µ±a=1ʱ,Çó²»µÈʽf(x)¡Ýg(x)µÄ½â¼¯;
(2)Èô²»µÈʽf(x)¡Ýg(x)µÄ½â¼¯°üº¬[-1,1],ÇóaµÄÈ¡Öµ·¶Î§.
2
רÌâÄÜÁ¦ÑµÁ·21 ²»µÈʽѡ½²(Ñ¡ÐÞ4¡ª5)
Ò»¡¢ÄÜÁ¦Í»ÆÆѵÁ·
1.½â (1)ÓÉ
,µÃab¡Ý2,ÇÒµ±a=b=ʱµÈºÅ³ÉÁ¢. ¹Êa3
+b3
¡Ý2
¡Ý4
,ÇÒµ±a=b=ʱµÈºÅ³ÉÁ¢.
ËùÒÔa3
+b3
µÄ×îСֵΪ4.
(2)ÓÉ(1)Öª,2a+3b¡Ý2¡Ý4
.
ÓÉÓÚ4
>6,´Ó¶ø²»´æÔÚa,b,ʹµÃ2a+3b=6.
2.(1)Ö¤Ã÷ ÓÉa>0,ÓÐf(x)=+|x-a|¡Ý
+a¡Ý2.¹Êf(x)¡Ý2.
(2)½â f(3)=+|3-a|.µ±a>3ʱ,f(3)=a+,ÓÉf(3)<5,µÃ3 µ±0 ÓÉf(3)<5,µÃ ×ÛÉÏ,aµÄÈ¡Öµ·¶Î§ÊÇ. 3.½â (1)²»µÈʽm-|x-2|¡Ý1¿É»¯Îª|x-2|¡Üm-1, ¡à1-m¡Üx-2¡Üm-1,¼´3-m¡Üx¡Üm+1. ¡ßÆä½â¼¯Îª[0,4], ¡àm=3. (2)ÓÉ(1)Öªa+b=3. (·½·¨Ò»:ÀûÓûù±¾²»µÈʽ) ¡ß(a+b)2=a2+b2+2ab¡Ü(a2+b2)+(a2+b2)=2(a2+b2),¡àa2+b2¡Ý,µ±ÇÒ½öµ±a=b=¡àa2+b2µÄ×îСֵΪ . (·½·¨¶þ:ÏûÔª·¨Çó¶þ´Îº¯ÊýµÄ×îÖµ) ¡ßa+b=3, ¡àb=3-a, ¡àa2+b2=a2+(3-a)2=2a2-6a+9=2, ¡àa2+b2µÄ×îСֵΪ . 4.(1)½â f(x)= µ±x¡Ü-ʱ,ÓÉf(x)<2µÃ-2x<2,½âµÃx>-1; µ±- µ±x¡Ýʱ,ÓÉf(x)<2µÃ2x<2,½âµÃx<1. ËùÒÔf(x)<2µÄ½â¼¯M={x|-1 (2)Ö¤Ã÷ ÓÉ(1)Öª,µ±a,b¡ÊMʱ,-1 ´Ó¶ø(a+b)2-(1+ab)2=a2+b2-a2b2 -1= (a2-1)(1-b2 )<0.Òò´Ë|a+b|<|1+ab|. 5.½â (1)µ±a=1ʱ,f(x)=|x+1|-|x-1|,¼´f(x)= ʱȡµÈºÅ, 3