T
S1
C p ln
T
T
2
(在恒容下 )
S2
V
ln
设 C 点温度为 T', 1
C
(在等压下 ),
S
S
C ln
T C
2
p
R
ln
T 1 2
p
T
T
1
C
T
2
R
ln
T 2 C
等
容
B
T p 2 2 ln
:
p
T
T 1 T p 1
C
T p 2
R
ln p 1
或:
T
2
ln
2
V
; 2 T p
T
p
1
1
2
nR
∴ ΔS3 = ΔS1 + ΔS2 5. 证明:
A
A
n
i
T
i
S
j
i
T ,V ,n
V ,n
ni
n
T T
V ,n
i
T ,V
,n
j i
T ,V ,n
j i
V , n
p
i
S
V
i
i
T
,
,
T
∵ d
i
Si dT
Vi dp ,∴
V n
V n
S p
i
则
S
V
i
i
ni
T
T
T ,V ,n
V n
j ,
, V n
i
6.解: (1) 等温过程: ΔU = ΔH = 0,
Q
W
nRT ln
p
1 1 3987 .5
p
8 .314 2
298 ln 5 S
Q R 3987
.5 -1 T
298 13 .38 J K
A G
3987 .5 ,
Q
W
2
V
RT
(2) ΔU = ΔH = 0,
p V
1
p
- 1
3987 .5 1
G
A
J S
nR ln
13 .38 J K
,
p
2
1
5 ,
2
T T p
1 298 5 5
(3) 3 2 1 p
2
156 .8 K
T
p V
1 1
nR
J; 3987 .5
J
W J
1
p
2 8.314 298 1 5 1982 J
p
1
U H
nC
V ,m
T T
p ,m
3
R R
156 .8
156 .8
298
2934
,W J
,Q 298 1761 J 0 U R
1761 J ln
- 1 5 112 .6 J K
nC
2
5 2 , S
1
S A G
0 U H
S
2
S 298 K R ln
p
1
126
p
2
S T 2 S T 2
T
298
1
1761 112 .6 14318 2934 112 .6 12965
156 .8 J 156 .8 J
T 298
(4)
Q
0,V
V
3
W , R T
2 2
2
T
p
1 2
1
1
U
3 2
R
2
T R 298 2
1 T 298 , T 202 .6 K 2 2 5
U
T H T
nC
V ,m
T
1
3 2
R 202 .6 298 1990 J W R 202 .6 298 1983 J p 1 5 .36 J K p
2
-1
-1
nC
p ,m
2
T
1
5 2
S nC
ln
p , m
T
2
nR ln
T
1
-1
S
1
112 .6 J K
,
S
2
S
1
S 112 .6 1190
8454 1983 7661
5. 36 118 118
118 J 202 .6 112 .6 202 .6 112 .6
K J J
A G
U H
S 2 S 2
T
2
S T
298
1 1
T
2
S T 298
1 1
7.解:
∵ p = 0, ∴ W = 0 ,设计如图,按 1,2 途经计算:
nRT ln
p
1
=
8 .314
1
373
ln
0.5
= 2149.5 J
Q1 = ΔH1 = 40670 J ,Q2 = - W2 =
p
2
W1 = - p(Vg- Vl) = - pVg = - RT = - 3101 J, W2 = - 2149.5 J
Q' = Q1 + Q2 = 40670 + 2149.5 = 42819.5 J ,W' = W1 + W2 = - 3101 - 2149.5 = - 5250.5 J ΔU = Q'- W' = 42819.5 - 5250.5 = 37569 J ΔH2 = 0,ΔH = ΔH1 = 40670 J ,向真空膨胀: W = 0,Q = ΔU = 37569 J
ΔS = ΔS1 + ΔS2 =
373 40670
+
R ln
1 0 .5
- 1
= 109.03 + 5.76 = 114.8 J K ·
ΔG = ΔH - TΔS= 40670 - 373 × 114.8 = - 2150.4 J ΔA = ΔU + TΔS= 37569 - 373 × 114.8 = - 5251.4 J
8.解: Pb + Cu(Ac) 2 → Pb(Ac)2 + Cu ,液相反应, p、T、V 均不变。 W' = - 91838.8J,Q = 213635.0 J,W(体积功 ) = 0,W = W' ΔU = Q + W= 213635 - 91838.8 = 121796.2 J
Q R
ΔH = ΔU + Δp(V) = UΔ= 121796.2 J ΔS= T
= 213635/298 = 716.9 J K · ΔA = ΔU - TΔS= - 91838.8 J,ΔG = - 91838.8 J
- 1
9. 解:确定初始和终了的状态
V
He nRT He
2 .2 8 .314 283 1. 013 10
5
3 0.04649 m
p
2
V H
nRT H 2
2
初
p
态:
终态:关键是求终态温度,绝热,刚性,
nHe C
He
V ,m
2
He
H 2
V ,m
2
293 8 .314 5
10 1 .013
.2 3 0. m 02406
ΔU = 0
T
T
H
2
T T n C
H
0
2
即: 2 × 1.5R × (T2- 283.2) = 1 × 2.5R × (293.2 - T2) , ∴ T2 = 287.7 K
V2 =
V He
3
V
= 0.04649 + 0.02406 = 0.07055 m
H
2