三相无刷直流电机控制系统设计(精)

广东工业人学工学硕上学位论文 1.2无刷直流电机的发展

电机作为主要的能量转换装置,已被广泛应用于家用电器、信息处理设备、 汽车工业、机器人等各个领域。直流电机具有优秀的线性机械特性、宽的调速范 围、大的启动转矩、简单的控制电路等优点被广泛应用于于各种驱动装置和伺服 系统中,但是直流电机是依靠换向器和机械电刷进行换向,由于换向器和电刷的 接触,使直流电机结构复杂、可靠性差、变化的接触电、产生电火花、电磁干扰, 噪声等一系列问题、影响了直流电机的性能。因此从上个世纪以来人们就开始研 究一种不用机械电刷和换向器的直流电机。1955年,美国D.Harrison等人首次 成功的实现了用晶体管换向线路代替有刷直流电机机械电刷,这标志着现代无刷 直流电机的诞生。…心1

二十世纪六十看年代以来,由于高性能新型永磁材料、大功率开关器件、模 拟和数字专用集成电路、微处理技术、现代控制理论的发展,“无刷直流电机’’的 概念已由最初的具有电子换向的直流电动机发展到泛指一切具有“有刷直流电机” 外部特性的电子换向电机。无刷直流电动机真正进入实用阶段是从1978年开始, 当时前德国某公司在汉诺威贸易博览会上,正式推出一款经典无刷直流电动机及 其驱动器。80年代,国际上开展了深入的研究,先后研制成方波无刷直流电机和 正弦波无刷直流电动机,在10多年的时间里,无刷直流电动机在国际上已得到 较为充分的发展,在一些较为发达的国家里,无刷直流电动机将在未来几年内成 为主导电动机,并逐步取代其他类型的电动机。现在许多高档精密型产品都用无 刷直流电机,日本的不少公司已将无刷直流电机应用到数码照相机、微型收录机、 摄影机、打印机、存储驱动器、手机以及汽车空调、洗衣机、吸尘器、电动车、 心脏泵等领域。【2】

1.3无刷直流电机控制系统研究现状

现阶段国内外无刷直流电机控制的研究主要包括转子位置检测及功率开关 管的状态切换、速度调节、转矩脉动的抑制、无刷直流电机的起动。“儿钉¨¨\力 一、转子位置检测及开关状态切换

2

第一章绪论

无刷直流电机的运行是通过逆变器功率器件随转子的不同位置相应地改变 其不同的开关管组合状态来实现的,因此准确检测转子的位置并根据转子位置准 时切换功率器件的开关组合状态是控制无刷直流电机正常运行的关键。

1、用位置传感器检测转子位置及开关状态切换

利用传感器得到的不同位置信号经过门电路、模拟开关或专用芯片就可以得 到不同的开关逻辑信号,实现开关状态的自动切换,随着微处理器的应用,也可 以通过软件来进行切换,无刷电机常用的位置传感器有磁电感应式、磁敏式和光 电式。磁电式位置传感器既笨重又复杂,在方波电机中早已被淘汰。磁敏式霍尔 位置传感器由于体积小,简单可靠的特点而被广泛应用。光电式如光电码盘因高 精度的特点而广泛应用于伺服系统中。但位置传感器的使用增加了电机的体积, 且需要多根信号线,这给无刷直流电机的微型化带来了困难,也增加了电机制造 的工艺要求和成本。

2、无位置传感器检测转子位置及开关状态切换

为了省去位置传感器,根据各相反电势随转子位置改变的原理有些专家提出 了端电压检测法,把三相端电压经低通滤波器延时90度电角度,再经比较电路得 到开关逻辑信号。但该方法存在着低通滤波器在电机低速时延对不足90度电角度 的情况,导致触发信号提前切换,对电机电流、转矩产生较大的影响,严重时甚 至会引起电机失步。因此,又有人在此基础上进行补充,低速时,采取三相端电 压两两比较直接得出触发逻辑信号的方法,在整个运行段,根据不同的转速,在 两个位置检测电路之间进行切换。随着微处理器的应用,利用软件的延时对方法 可以完全简化端电压检测法的位置检测电路。沈建新在电工报发表文章提出用三 相端电压和比较电压间接得到绕组反电势的过零点,然后用软件延迟l/12周期的 时间再切换触发信号。但由于凸极电机中电枢反应和检测电路滤波器的影响会导 致电机超前或滞后换流,因此他又发表了一文章对此进行了修正,并取得了良好 的效果。 “端电压检测法”虽能完成

转子位置的检测,但由于绕组的反电势正比 于转子的转速,因此,在低速时就很难检测到反电势而会导致电机失步。

二、速度调节

根据无刷直流电机的机械特性转速为: n=(u-AU-IaV?ray/Ke (1—1 广东工业大学T学硕卜学位论文

因此可以通过调节端电压U或定子电流Iav来实现调速。有学者介绍了利用降 压型载波电路和两象限载波电路来进行调速的两种方法,两象限电路由于可以很 快地控制电流,因此其动态性能远远高于只是靠通过调节端电压来调速的降压型 电路,且前者还有回馈制动的功能,电流脉动也比后者小得多。也有人提出了用 PWM信号作为功率器件的触发信号,用调节PwM信号的占空比的方法来调速,该方 法可以直接控制电机的相电流,因而调速性能更佳,也可以很好地抑制电流的脉 动。

高性能的调速系统,尤其是速度伺服系统,需要有一适合于系统的控制策 略,即速度调节器。大部分系统采用了数字PID调节器,但这对交流伺服系统有一 定的局限性,因些就有专家采用PID控制与模糊控制相结合的Fuzzy—PID控制对速 度环进行控制,取得了良好的效果,使系统具有Fuzzy和PID控制的双重优点,且 在不同的负载下具有较强的鲁棒性。无刷直流电机是一个多变量、非线性、强耦 合的对象,因此利用模糊控制、神经网络控制、专家系统等具有自学习、自适应、 自组织功能的智能控制来进行对无刷直流电机的控制是一种有效的手段,这也是 高性能伺服系统发展的趋势。但仅仅对速度的控制是远远满足不了伺服系统的要 求的,要提高系统的性能,必须对电机的转矩进行控制。

三、转矩脉动的抑制

伺服系统的控制关键是对转矩的控制,但由于各种原因引起的转矩脉动问题 严重影响了无刷直流电机在交流伺服系统中的应用,尤其在直接驱动应用的场合, 转矩

脉动使电机速度控制特性极度恶化。因而,抑制转矩脉动成为提高伺服系统 性能的关键。对于齿槽效应和磁通畸变引起的转矩脉动的抑制有关专家提出了除 从电机设计的角度进行改善外还要采用转矩闭环控制;对于相电流换向引起的转 矩脉动的抑制有关专家提出了用滞环控制和PWM控制来抑制电机低速段的转矩脉 动的方法,实验中也取得效果,但没有对电机高速段的转矩脉动提出相应的办法。

四、无刷直流电机的起动

对于有位置传感器的无刷直流电机来说,顺利起动是不存在什么问题了。但 对于靠反电势进行位置检测的无位置传感器的无刷直流电机来说,由于静止时不 产生反电势,从而使得怎样顺利起动成了控制无位置传感器的无刷直流电机的重

4

联系客服:779662525#qq.com(#替换为@) 苏ICP备20003344号-4