《微积分(1)》练习题
一.单项选择题
1.设f??x0?存在,则下列等式成立的有( ) A. limf?x0??x??f?x0?f?x0??x??f?x0??f??x0? B.lim??f??x0?
?x?0?x?x?0?xC.limf?x0?2h??f?x0?h?0h?f??x.limf?x0?2h??f?x0?10? Dh?0h?2f??x0? 2.下列极限不存在的有( )
A.lim1x2?2xx?0xsinx2 B.xlim???x?1
12C. limxx?0e D.lim?3x?1?3x??2x6?x
3.设f(x)的一个原函数是e?2x,则f(x)?( )
A.?2e?2x B.e?2x C.4e?2x D. ?2xe?2x
?2x,0?x?14.函数f(x)???1,x?1在?0,???上的间断点x?1为( )间断点。
??1?x,x?1A.跳跃间断点; B.无穷间断点;
C.可去间断点; D.振荡间断点
5. 设函数f?x?在?a,b?上有定义,在?a,b?内可导,则下列结论成立的有( ) A. 当f?a?f?b??0时,至少存在一点???a,b?,使f????0; B. 对任何???a,b?,有limx???f?x??f?????0;
C. 当f?a??f?b?时,至少存在一点???a,b?,使f?????0; D.至少存在一点???a,b?,使f?b??f?a??f?????b?a?; 6. 已知f?x?的导数在x?a处连续,若limf??x?x?ax?a??1,则下列结论成立的有(A.x?a是f?x?的极小值点; B.x?a是f?x?的极大值点;
)
C.?a,f?a??是曲线y?f?x?的拐点;
D.x?a不是f?x?的极值点,?a,f?a??也不是曲线y?f?x?的拐点; 二.填空: 1.设y?f?arcsin??1??,f可微,则y??x?? x?2.若y?3x5?2x2?x?3,则y?6??
3.过原点?0,1?作曲线y?e2x的切线,则切线方程为
4?x?1??2的水平渐近线方程为 x2 铅垂渐近线方程为 4.曲线y?5.设f?(lnx)?1?x,则f??x?? f?x??
三.计算题:
x2?1?x?2?(1)lim2 (2)lim??x?1x?2x?3x???x?x?3
ln(1?x2)2(3)lim (4)y??ln?1?2x?? 求dy
x?0xsin3x (5)exy?y3?5x?0 求
dydxx?0
四.试确定a,b,使函数f?x???
?b?1?sinx??a?2,x?0在x?0处连续且可导。 axe?1,x?0?x五.试证明不等式:当x?1时,e?x?e?
六.设F?x??1xex?e 2??f?x??f?a?,x?a?x?a?,其中f?x?在?a,???上连续,f???x?在?a,???内存
在且大于零,求证F?x?在?a,???内单调递增。
《微积分》练习题参考答案
七.单项选择题 1.( B )2.( C )3.( A )4.( C ) 5.( B )6.( B ) 八.填空:(每小题3分,共15分) 1. ?1xx2?1f????arcsin1?x??
2. y?6??0 3. y?2x?1 4. y??2 , x?0
5. f??x??1?ex,f?x??x?ex?c
三,计算题:(1)limx2?1x?1x2?2x?3 2limx?1x?1x2?2x?3?lim2xx?12x?2 ?12(3)limln(1?x2)x?0xsin3x ln(1?x2lim) x?0xsin3x ?limx21x?0x?3x?3 (5)exy?y3?5x?0 求
dydxx?0 exy?y?xy???3y2y??5?0y??5?yexy? 3y2?xexy又x?0?y??1
x?3(2)lim?x?2?x????x??
x?3lim?x???x?2??x???lim2?x?2???2???x?3?x??(1?x)?x? ?exlim2x?6???x?e?2(4)y??ln?1?2x??2 求dy
dy?2?ln?1?2x???1???2 ??4?ln?1?2x??1?2x?dx1?2xdx